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Abstract

The purpose of this paper is to present the theory of the static acoustic radiation force on layered cylinders. The

frequency dependence of the acoustic radiation force function Yp (which is the radiation force per unit energy density and

unit cross-sectional surface) for coated cylinders suspended in an incident plane wave sound field is analyzed, in relation to

the thickness of the outer covering layer and the surrounding fluid. Explicit numerical calculations are presented for

layered lossless cylinders immersed in water. The fluid-loading effect on the radiation force function curves is also analyzed

by considering a high-density fluid surrounding the cylinders. These results show how absorption and the exterior fluid

surrounding the cylinders affect the acoustic radiation force. It is shown here that the theory developed is much broader in

scope compared to other existing theories.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that radiation can exert a force [1]. The solar wind, for example, is caused by sunlight
blowing away microparticles and its force on the surface of the sea is in the micro-Newton range. Similarly,
sound waves exert a force (generally much larger than its electromagnetic counterpart) on objects placed along
their path [2]. This force is called acoustic radiation force and is found to be useful in many applications [3].

The theory of acoustic radiation force was first investigated by Rayleigh [2]. Since then, a large amount of
theoretical and experimental work has been performed on the acoustic radiation force acting on spheres.
A detailed list of articles dealing with the acoustic radiation force can be found in Ref. [4]. The first theoretical
study on cylinders goes back to the early work of Awatani [5] who developed an exact formula for the acoustic
radiation force caused by progressive and stationary plane continuous-wave fields impinging on a rigid
movable cylinder of variable density immersed in a compressible ideal fluid. In that study, the radiation force
was numerically evaluated for a small range of size parameter values (0pkap5). On the other hand, Zhuk [6]
derived a long-wavelength approximation for the radiation force of progressive waves incident on a rigid
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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movable cylinder. He computed the force for cylinders of variable densities immersed in non-viscous water in
the range of 0pkap2. He showed that the radiation force increases with increasing frequency and
significantly depends on the ratio of densitites of the fluid and cylinder. The theory of acoustic radiation force
acting on a rigid movable cylinder in a progressive wave-field was extended to include its elasticity [7].
An approximate analytical solution (for ka51) for the acoustic radiation force exerted on a rigid movable
cylinder was developed [8] and theoretical results were compared with experimental data obtained on a thin-
walled microneedle. The agreement between theoretical and experimental results was about 20%. Further
investigations were performed to study the acoustic radiation force on elastic shells in progressive waves [4],
fluid compressible cylinders in stationary waves, to analyze the dynamics of long liquid columns [9], and rigid
immovable, elastic, and viscoelastic cylinders in progressive [7,10] and stationary [11] plane waves. Lately,
experimental and theoretical calculations of the radiation force on an elastic cylinder were obtained using the
far-field derivation approach [12].

The purpose of this study is to extend the theory previously developed [7] to calculate the acoustic radiation
force experienced by elastic cylinders coated by a sound absorbent layer and placed in a plane progressive
continuous-wave field. Although a recent work dealing with the acoustic radiation force on coated cylinders in
plane stationary waves has been published [13], a particularly important development and application of the
theory for progressive waves is necessary in the field of non-destructive evaluation (NDE) for ultrasonic
cleaning of layered cylinders immersed in non-viscous fluids [14]. Detection of delamination failure may
benefit too, as repeated cyclic stresses, impact, etc., can cause layers to separate. Another application may
consider estimating the covering layer thickness by inverting the problem arising from the radiation force
function curves.

Here, analytical equation for the acoustic scattering of plane waves incident on a layered cylinder is derived
and used to calculate the radiation force. Numerical calculations for the radiation force function Yp—which is
the radiation force per unit energy density and unit cross-sectional surface—are performed for a large range of
size parameter values indicating how the acoustic radiation force function can be affected by variations of the
cylinder’s mechanical parameters, the thickness of the coating layer, and the surrounding fluid medium.
The fluid-loading effect on radiation force was also examined by considering a high density fluid surrounding
the cylinder (in this case mercury) chosen as an example.

2. Method

The acoustic radiation force experienced by a coated cylinder subjected to an incident continuous plane
waves and immersed in an ideal fluid is determined by the solution to the linear scattering acoustic field
disturbed by the presence of the layered cylinder. Hence, the acoustic scattering problem should be solved first.
The radiation force is then determined by integrating the averaged radiation-stress tensor over the surface of
the layered cylinder.

2.1. Acoustic scattering by the layered cylinder

The geometry and the coordinate system used are shown in Fig. 1. The center of the layered cylinder
coincides with the origin of a rectangular coordinate system (x0,y0,z0), and the plane waves approach the
cylinder along the negative x0-axis (y ¼ p).

In the exterior fluid medium (medium 1), the linearized continuity and Euler’s equations can be written
as [15]

qr1
qt
þ r1r � v ¼ 0, (1)

r1
qv
qt
þ rP ¼ 0, (2)

where r1 is the mass density, P is the ambient pressure equal to P0 in the absence of sound, and v is the fluid
velocity. For an ideal (non-viscous) fluid, the linearized equation of state is P ¼ c21r

0; where c1 is the speed of
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Fig. 1. A coated cylinder placed in a progressive plane-wave field incident in the direction y ¼ p.
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sound, and r0 corresponds to the fluctuations of the medium density caused by the passage of the sound wave.
Eqs. (1) and (2) can be combined to a single equation for the velocity v:

q2v
qt2
¼ c21rðr � vÞ. (3)

Assuming that the velocity v can be derived from a scalar potential j1, v ¼ �rj1, Eq. (3) can be rewritten in
an equivalent form:

q2j1

qt2
¼ c21r

2j1. (4)

Assuming also that the incident field is composed of monochromatic plane waves, the solutions of Eq. (4)
are of the form

j1ðr; y; tÞ ¼ Re½j1ðr; y;oÞ e
�iot�, (5)

where Re[.] indicates the real part of a complex number, and j1(r,y,o) may be complex. Replacing Eq. (5) in
Eq. (4), and after some manipulation, the Helmholtz equation is obtained:

ðr2 þ k2
1Þj1 ¼ 0, (6)

where the compressional wavenumber in the fluid k1 ¼ o/c1.
Therefore, the total scalar velocity potential field (solution of Eq. (6)) is the sum of the incident and

scattered fields and it can be expressed in cylindrical coordinates by

j1ðr; yÞ ¼ F0

X1
n¼0

�ninðJnðk1rÞ þ anH ð1Þn ðk1rÞÞ cosðnyÞ, (7)

where F0 is the amplitude, en called the Neumann factor is defined as e0 ¼ 1 and en40 ¼ 2, Jn( � ) and H ð1Þn ð�Þ are
the cylindrical Bessel and Hankel functions of the first kind of order n, respectively, k1 is the wavenumber in
the exterior fluid medium (medium 1), and an are the unknown scattering coefficients that will be determined
by the appropriate boundary conditions.

The waves inside the layered cylinder (media 2 and 3) will be represented by suitable solutions of the
equation of motion of a solid elastic medium (since no absorption is included yet), which may be written as

ðl2;3 þ m2;3Þrðr �U2;3Þ þ m2;3r
2U2;3 ¼ r2;3

q2U2;3

qt2
, (8)
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where l2,3 and m2,3 are the Lamé coefficients, and r2,3 the mass densities for the covering layer (medium 2) and
core material (medium 3), respectively. U2,3 is the vector displacement that can be expressed as a sum of the
gradient of a scalar potential F2,3 and the curl of a vector potential W2,3 as follows:

U2;3 ¼ rF2;3 þ ðr �W2;3Þ. (9)

Using the problem symmetry, the vector potential W2,3 reduces to a scalar equation, i.e. W2,3 ¼ (0,0,C2,3),
and using the condition r �W2,3 ¼ 0 (since W2,3 is a solenoidal field), the Helmholtz equations for the solid
medium are obtained as follows:

ðr2 þ k2
L;2;3ÞF2;3 ¼ 0, (10)

ðr2 þ k2
S;2;3ÞC2;3 ¼ 0, (11)

where kL;2;3 ¼ o=½ðl2;3 þ 2m2;3Þ=r2;3�
1=2 and kS;2;3 ¼ o=½m2;3=r2;3�

1=2; refer to the longitudinal and shear
wavenumbers in the solid media, respectively.

The longitudinal and shear waves inside the layer (medium 2) are represented in cylindrical coordinates by

F2ðr; yÞ ¼ F0

X1
n¼0

�ninðbnJnðkL;2rÞ þ cnY nðkL;2rÞÞ cosðnyÞ, (12)

C2ðr; yÞ ¼ F0

X1
n¼0

�ninðdnJnðkS;2rÞ þ enY nðkS;2rÞÞ sinðnyÞ, (13)

where Yn( � ) are the cylindrical Bessel functions of the second kind. Sound absorption by the polymer-type
viscoelastic layer is modeled by introducing complex wavenumbers independent of frequency, accounting for
losses inside the covering layer. Incorporating complex wavenumbers independent of frequency into the
acoustic scattering theory holds only for linear viscoelasticity. Therefore the material’s corresponding
normalized absorption coefficients of compressional and shear waves are constant quantities [16,17].

In the core material (medium 3), the potentials solution of Eqs. (10) and (11) are given by

F3ðr; yÞ ¼ F0

X1
n¼0

�ninf nJnðkL;3rÞ cosðnyÞ, (14)

C3ðr; yÞ ¼ F0

X1
n¼0

�ningnJnðkS;3rÞ sinðnyÞ, (15)

an, bn, cn, dn, en, fn, and gn, are the unknown coefficients determined from the following boundary
conditions:
�
 At the outside boundary of the coated cylinder (interface at medium 1 and 2), the displacements (velocities)
and normal stresses must be continuous and the tangential stresses must be zero, leading to:
J v 1ð Þ

r

��
r¼c
¼ �ioU 2ð Þ

r

��
r¼c
;

J s 1ð Þ
rr

��
r¼c
¼ s 2ð Þ

rr

��
r¼c
;

J s 2ð Þ
ry

���
r¼c
¼ 0:
�
 At the interface between the outer layer and core material (interface at medium 2 and 3), the radial and
tangential displacements are continuous, and the radial and tangential stresses of adjoining materials are
equal:

J U 2ð Þ
r

��
r¼b
¼ U 3ð Þ

r

��
r¼b
;

J U
2ð Þ
y

���
r¼b
¼ U

3ð Þ
y

���
r¼b
;

J s 2ð Þ
rr

��
r¼b
¼ s 3ð Þ

rr

��
r¼b
;

J s 2ð Þ
ry

���
r¼b
¼ s 3ð Þ

ry

���
r¼b
:
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The general expressions of the velocities, displacements and stress components are similar to those obtained
for the case of stationary waves [13]. The boundary conditions lead to seven linear equations with seven
(scattering) coefficients. The general solution for an is given by

an ¼

l�1 l12 l13 l14 l15 0 0

l�2 l22 l23 l24 l25 0 0

0 l32 l33 l34 l35 0 0

0 l42 l43 l44 l45 l46 l47
0 l52 l53 l54 l55 l56 l57
0 l62 l63 l64 l65 l66 l67
0 l72 l73 l74 l75 l76 l77

�����������������

�����������������
l11 l12 l13 l14 l15 0 0

l21 l22 l23 l24 l25 0 0

0 l32 l33 l34 l35 0 0

0 l42 l43 l44 l45 l46 l47
0 l52 l53 l54 l55 l56 l57
0 l62 l63 l64 l65 l66 l67
0 l72 l73 l74 l75 l76 l77

�����������������

�����������������

, (16)

where l�1, l
�
2 and lij are the dimensionless elements of the determinants given in Ref. [13].
2.2. Acoustic radiation force exerted on a layered cylinder

The acoustic radiation-stress tensor
Q

represents the transfer of momentum from the acoustic wave to the
coated cylinder. This transfer of momentum results in the application of a force vector. The averaged force is
defined as the integration of the time-average radiation-stress tensor [18] on the surface of the cylinder at rest
S0 (near-field), or on any closed surface S in the fluid that encloses the scatterer (far-field) as long as the
cylinder is immersed in an ideal fluid. The averaged force is given by

oF4 ¼ �
I
S

P
D E

dS ¼ �

I
½oP� P04þ r1ov � v4�dS, (17)

where dS ¼ n dS(n is the normal directed away from the cylinder) is the elementary area. The quantity
/P�P0S is a ‘‘mean Eulerian excess pressure’’ [19] given up to second order by

hP� P0i ’ r1
qj1

qt

� �
þ

1

2

r1
c21

qj1

qt

� �2
* +

�
1

2
r1 rj1

�� ��2D E
, (18)

where r1 and c1 are the mass density and sound velocity in the exterior fluid medium (medium 1), respectively.
Since the sound velocity potential is oscillatory, the time-average over a cycle is then /qj1/qtS ¼ 0. Thus,
after inserting Eq. (18) into Eq. (17), the time-averaged force can be rewritten as [7]

Fh i ¼ �

ZZ
S

1

2

r1
c21

qj1

qt

� �2
* +

�
1

2
r1 rj1

�� ��2D E !
nþ r1 ðvnnþ vttÞvn

� �" #
dS, (19)

where vnn and vtt are the normal and tangential components of the fluid particle velocity of the boundary,
respectively.



ARTICLE IN PRESS
F.G. Mitri, Z.E.A. Fellah / Journal of Sound and Vibration 308 (2007) 190–200 195
In the direction of wave propagation (x-direction) the value Fx of the total radiation force F is expressed
as [7]

hF xi ¼ hF ri þ hFyi þ hFr;yi þ hFti, (20)

where

F rh i ¼ �
1

2
cr1

Z 2p

0

qj1

qr

� �2

r¼c

cos ydy

* +
,

F yh i ¼
1

2c
r1

Z 2p

0

qj1

qy

� �2

r¼c

cos ydy

* +
,

Fr;y
� �

¼ r1

Z 2p

0

qj1

qr

� �
r¼c

qj1

qy

� �
r¼c

sin ydy
� �

,

Fth i ¼ �
1

2c21
cr1

Z 2p

0

qj1

qt

� �2

r¼c

cos ydy

* +
. ð21Þ

The final expression of the total force can be represented by

hF xi ¼ hEiScY p, (22)

where hEi ¼ 1
2
r1k

2
1 F0j j

2 is the mean energy density of the incident plane acoustic wave field, and Sc ¼ 2c is the
cross-sectional area for a unit-length cylinder. Yp is a dimensionless factor called radiation force function that
depends on the scattering and absorption properties of the cylinder target and is the radiation force per unit
cross section and unit energy density.

After replacing the total velocity potential j1 (defined by Eq. (1)) in Eqs. (20) and (21) and manipulating the
results, the expression of Yp is greatly simplified and is given by

Y p ¼ �
2

k1c

X1
n¼0

an þ anþ1 þ 2ðananþ1 þ bnbnþ1Þ
	 


, (23)

where an and bn are real and imaginary parts of the scattering coefficients an defined by Eq. (16).
In a recent work [12], it was shown that Eq. (23) obtained from a near-field derivation approach is identical

to the following equation:

YFar�field
p ¼ �

2

k1c

X1
n¼0

½�nan þ 2ðananþ1 þ bnbnþ1Þ� (24)

which is obtained from a far-field derivation approach. It has been recognized that calculations of radiation
force based on far-field limits of the scattering are equivalent to those obtained from a near-field derivation in
the idealized case of loss-less media. This result has been discussed for the case of cylinders placed in-plane
stationary waves in an ideal fluid [13,20].

3. Numerical results and discussion

The calculations were performed for coated cylinders immersed in water and mercury, respectively,
using Eq. (23). Both core and layer materials could be absorbent; however, in the following case,
the outer layer consisted of phenolic polymer; a viscoelastic plastic material, and the core material of gold and
stainless-steel materials, respectively, and they, let us note, are considered to be lossless. The mechanical
parameters for these materials used in the calculations are given in Table 1. Absorption of sound inside the
outer layer is included by introducing complex size parameters in the theory. Absorption in polymers was
found to be of a hysteresis type (linearly dependent on frequency) so that the size parameters for both
compressional and shear waves can be expressed in terms of frequency-independent factors [16].
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Table 1

Material parameters used in the numerical calculations

Material Mass density

(103 kg/m3)

Compressional

velocity (m/s)

Shear velocity

(m/s)

Normalized

longitudinal

absorption, g21

Normalized shear

absorption, g22

Gold 19.3 3240 1200 — —

Stainless steel 7.9 5240 2978 — —

Phenolic polymer 1.22 2840 1320 0.0119 0.0257

Mercury 13.6 1407 — — —

Water 1.00 1500 — — —

Fig. 2. The radiation force function Yp versus k1b for polyethylene-coated gold cylinders immersed in water for different thicknesses

[(a) e1 ¼ 1; (b) e1 ¼ 1.01; (c) e1 ¼ 1.1; and (d) e1 ¼ 1.5] of the covering layer with (solid line) and without (dashed line) absorption.
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The normalized absorption coefficients for both compressional and shear waves are listed in Table 1. The
thickness of the viscoelastic layer is defined as the ratio of the outer radius to the inner radius of the layered
cylinder e1 ¼ c/b (Fig. 1).

Radiation force function curves were plotted as function of the size parameter x ¼ k1b with particular
emphasis on the effect of absorption, and the thickness of the outer covering by varying e1. Computations for
coated gold and stainless-steel cylinders were performed in a large range of size parameter values 0pxp60 by
intervals of 0.001. It is very important to choose a sufficiently small sampling step since resonance peaks are
very sharp and a wrong sampling may lead to incorrect curves. It is also very important to extend the
summation over the partial wave series to exceed the size parameter x to ensure proper convergence.



Fig. 3. The same as in Fig. 2 but for polyethylene-coated stainless-steel cylinders.
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As initial test, the calculations for uncoated (e1 ¼ 1) gold (Fig. 2a) and stainless-steel (Fig. 3a) cylinders
immersed in water were performed and compared to Figs. 3 and 5 of Ref. [7]. Excellent agreement was
found.

Cases of coated cylinders immersed in water are shown in Figs. 2b–d and 3b–d for gold and stainless-steel
materials, respectively, with and without absorption in the viscoelastic layer. Figures reveal that decrease in
the amplitude of peaks is mainly due to absorption. Moreover, the effect of increasing the thickness
of the outer covering (by varying e1; e1 ¼ 1;1.01;1.1;1.5) (Figs. 2b–d and 3b–d) drastically changes radiation
force.

Increase in the radiation force function amplitude values for thick absorptive layers, especially at
high size parameter values (Figs. 2d and 3d) where damping of all peaks appears more clearly it is
particularly noteworthy. This enhancement at high size parameter values in the radiation force function’s
amplitude is related to sound-energy absorption; when absorption is strong, the sound-energy density
in the area of incident plane wave field is higher when compared to the case without absorption. Hence, the
net force per cross-section acting on the viscoelastically coated cylinder in the direction of the incident
waves is high.

Figs. 4a–d and 5a–d show additional calculations of the acoustic radiation force function curves for
coated gold and stainless-steel cylinders immersed in mercury, with and without the inclusion of
absorption within the viscoelastic layers. Obviously, the effect of fluid loading on coated cylinders is
more prominent for the stainless-steel material whose mass density is relatively low with respect to the
surrounding fluid. The fluid loading produces interactions between various resonance vibrational modes that
can have significant effect on radiation force. This is clearly observed in Fig. 5d where the first resonance dip in
case of water (Fig. 3) is transformed into a giant resonance peak at low size parameter values. A similar
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Fig. 4. The radiation force function Yp versus k1b for polyethylene-coated gold cylinders immersed in mercury for different thicknesses

[(a) e1 ¼ 1; (b) e1 ¼ 1.01; (c) e1 ¼ 1.1; and (d) e1 ¼ 1.5] of the covering layer with (solid line) and without (dashed line) absorption.
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behavior has been observed in acoustic backscattering from viscoelastic cylinders immersed in a high density
fluid [21].

One notices also from Figs. 4a–d and 5a–d that, for the case of coated cylinders immersed in a
high density fluid, the effect of absorption inside the viscoelastic layer is less pronounced at high size
parameter values.

In the figures, the positions of minima and maxima are determined by the coated cylinder’s material
properties. A detailed discussion on whether the resonances are manifested as either maxima or minima in the
Yp curves is given in a previous publication [22].

4. Conclusion

In this work, the theory of the acoustic radiation force due to progressive incident plane waves
of a continuous field impinging on coated cylinders immersed in inviscid fluids is examined. Basic calculations
are performed for different materials and different thickness of the outer covering viscoelastic layers. The
results of numerical calculations are presented indicating the ways in which the radiation force function curves
are affected by variations of the cylinders’ mechanical properties. The proposed model leads to an extension of
the standard theory on the acoustic radiation force experienced by elastic cylinders since its corresponding
results are obtained here by allowing e1 ¼ 1. The results for cylindrical shells can also be obtained by
considering the core material as a fluid medium (shear velocity equal to zero) coated by an elastic (or a
viscoelastic) layer.
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Fig. 5. The same as in Fig. 4 but for polyethylene-coated stainless-steel cylinders. One notices the high resonance peak at low size

parameter values especially when the thickness of the viscoelastic layer increases (d).
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